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This document is mostly based on the paper ‘Sets of recurrence of Zm-actions
and properties of sets of differences in Zm’, by V. Bergelson.

1 Densities in N
There are several ways in which we can compare the sizes of infinite sets of
natural numbers. Today we will focus on densities:

Definition 1.1. The natural density of a set E of natural numbers is

d(E) = lim
N→∞

|E ∩ {1, . . . , N}|
N

∈ [0, 1],

if this limit is defined.

Density is somehow similar to a probability measure in the set of natural
numbers, as it satisfies the following properties:

• d(∅) = 0, d(N) = 1.

• d(A ∪B) = d(A) + d(B) if A,B are disjoint and have density.

• Translation invariance: d(A+ 1) = d(A),1 if d(A) is defined.

Example 1.2. d(3N) = 1
3 , d(prime numbers) = 0, d(squarefree numbers) = 6

π2 .

Not all sets of natural numbers have density, as we will check in a moment.
What is always defined is upper density and lower density :

d(E) = limN→∞
|E ∩ {1, . . . , N}|

N

d(E) = limN→∞
|E ∩ {1, . . . , N}|

N
.

Thus, a set E has density d(E) = a iff d(E) = d(E) = a.

Example 1.3. The set E = ∪N∈N[(2N)!, (2N+1)!] satisfies d(E) = 1, d(E) = 0,
so it does not have density. Draw picture of the set in blackboard.

For the set E of the previous example, we have d(E) = d(Ec) = 1, so that

d(E ∪ Ec) = 1 ̸= d(E) + d(Ec).

So d does not exactly behave like a probability measure.

1By A+ 1 we mean {A+ 1; a ∈ A}
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2 A translation-invariant density in P(N)
Using the axiom of choice, we can turn (N,P(N)) into a finitely additive prob-
ability measure space. Let’s see how. We will need the following as a black
box:

Theorem 2.1 (Existence of non-principal ultrafilters). There exists a finitely
additive probability measure ω in (N,P(N)) such that ω(A) ∈ {0, 1} for all
A ⊆ N, and ω(A) = 0 if A is finite.

It turns out you can use ultrafilters to define the limit of an arbitrary
bounded sequence of real numbers (even if it is not convergent in the usual
sense). Let L∞(N) be the family of bounded sequences of real numbers.

Theorem 2.2 (Taking limits of bounded sequences). There is a operator

lim
n→ω

: L∞(N) → R

(an)n∈N 7→ lim
n→ω

an,

satisfying the following properties:

1. limn→ω an + bn = limn→ω an + limn→ω bn.

2. limn→ω kan = k limn→ω an.

3. limnan ≤ limn→ω an ≤ liman (so limn→ω an = limn an if the limit is
defined).

Proof sketch. One can check that for any bounded sequence (an) there is a
unique value L such that ω({n ∈ N; an ∈ (L− ε, L+ ε)}) = 1 for all ε > 0. So
we define limn→ω an = L.

We can more generally define limits limn→ω an for any sequence (an)n∈N
defined in a compact metric space.

And finally, we may use these limits limn→ω to define a translation-invariant
mean (a density) in all of P(N): for A ⊆ N, let

dω(A) = lim
N→ω

|A ∩ {1, . . . , N}|
N

∈ [0, 1]. (1)

This density, dω, satisfies the following properties:

1. dω(∅) = 0, dω(N) = 1.

2. dω(A ∪B) = dω(A) + dω(B) if A,B are disjoint.

3. dω(A+ 1) = dω(A) for all A ∈ P(N).

4. d(A) ≤ dω(A) ≤ d(A). So dω(A) = d(A), if d(A) is defined.
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dω is not quite a probability measure on N; indeed, for all n we have
dω({n}) ≤ d({n}) = 0, so

dω(N) = 1 ̸=
∑
n

dω({n}).

The concept of translation-invariant means can be studied much more gen-
erally for topological groups, see Wikipedia - amenable group.

3 Using N as a probability space to prove a cool
theorem

We now prove the following theorem proved by Bergelson in his 1985 article
Sets of Recurrence of Zm-Actions and Properties of Sets of Differences in Zm.

Theorem 3.1. If a set A ⊆ N has d(A) > 0, then there exists B ⊆ N such that
d(B) > 0 and B +B ⊆ A−A.

Here, we used the notation B + B = {b + b′; b, b′ ∈ B} and A − A =
{a− a′; a, a′ ∈ A}.

First we need a nice, but elementary, measure theory lemma:

Lemma 3.2 (Intersectivity lemma). Let (X,B, µ) be a probability space, and let
(An) be a sequence of measurable subsets of X with µ(X) ≥ a > 0. Then there
exists a set B ⊆ N such that d(B) ≥ a and for all F ⊆ B finite, µ

(⋂
b∈F Ab

)
>

0.

We in fact prove the more general statement:

Lemma 3.3. Let (X,B, µ) be a probability space, and let (An) be a sequence of
measurable subsets of X. Then there exists a set B ⊆ N such that for all F ⊆ B
finite µ

(⋂
b∈F Ab

)
> 0, and

d(B) ≥ lim sup
N→∞

1

N

N∑
n=1

µ(An).

In particular, for all b, b′ ∈ B we have µ(Ab ∩Ab′) = ∅.

Proof. For F ⊆ N finite, let AF = ∩n∈FAn. We define

X ′ = X \
⋃

µ(AF )=0

AF .

Thus, µ(X ′) = 1. Now let fN = 1
N

∑N
n=1 χAn

, and f = lim supN fN . We have,
by Fatou’s lemma,∫
X′

fdµ =

∫
X

fdµ ≥ lim sup
N

∫
X

fNdµ = lim sup
N

1

N

N∑
n=1

µ(An) = lim sup
N

1

N

N∑
n=1

a = a.
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Thus, there is some point x0 ∈ X ′ such that f(x0) ≥ a. Letting B = {n ∈
N;x0 ∈ An}, we have

d(B) = lim sup
N

{n ≤ N ;x0 ∈ An} ∩ {1, . . . , N}
N

= lim sup
N

fN (x0) = f(x0) ≥ a.

Moreover, if F ⊆ B is finite, then x0 ∈ AF , so as x0 ∈ X ′, µ(AF ) > 0.

Note that the intersectivity lemma applies to countably additive probability
measure spaces, and our proof does not work for finitely additive probability
measure spaces. But in any case, we can ‘transfer it’ to finitely additive proba-
bility measure spaces.

This is because we can, in some sense, ‘imbed’ any finitely additive proba-
bility measure space into a countably additive one.

Proposition 3.4. Let (X,B, µ) be a finitely additive probability measure space
(so B is an algebra but not necessarily a σ-algebra). There exists a countably
additive probability measure space (X,B, µ) and an injective function f : B →
B;A 7→ A (in particular f(X) = X, we are abusing notation here) such that

µ(A) = µ(A) for all A ∈ B.
∅ = ∅

A ∪B = A ∪B

A ∩B = A ∩B.

I’ll black box this, one can prove it using Loeb measures, if anyone wants a
proof I can send my notes about Loeb measures/limits of a sequence of finitely
additive probability measure spaces.

Of course, one need not have µ
(⋃

n∈N An

)
= µ

(⋃
n∈N An

)
even if

⋃
n∈N An ∈

B, as the measure µ need not be countably additive.
Thus, Theorem 3.3 holds for any finitely additive probability measure space

(X,B, µ), as it has to hold for the associated space (X,B, µ).
The last ingredient we need is a measure theory fact:

Proposition 3.5. Let (X,B, µ) be a finitely additive probability space and T :
X → X a measure-preserving transformation. For any set A ∈ B, we have

lim sup
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA) ≥ µ(A)2

In fact the limsup is a limit and Theorem 3.5 holds for finitely additive
probability spaces too, this is a basic ergodic theory fact. I will likely blackbox
this in the talk due to time constraints, but let’s give an elementary proof
anyways, without von Neumann’s ergodic theorem.

Proof. Proof by contradiction, suppose there is ε > 0, N0 ∈ N such that, for all
N > N0,

1
N

∑N
n=1 µ(A ∩ T−nA) < µ(A)2, or,

∑N
n=1 µ(A ∩ T−nA) < Nµ(A)2.
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But then, by the Cauchy-Schwartz’ inequality and letting K ∈ N be a big
natural number and fK = 1

K

∑K
k=1 χT−kA,

K2µ(A)2 =

(∫
X

fKdµ

)2

≤
∫
X

f2
Kdµ =

K∑
i,j=1

µ(T−iA ∩ T−jA)

= Kµ(A) + 2
∑

1≤i<j≤K

µ(A ∩ T i−jA)

= Kµ(A) + 2

K−1∑
k=1

k∑
n=1

µ(A ∩ T−kA)

≤ Kµ(A) +N2
0 + 2

K−1∑
k=N+1

k∑
n=1

µ(A ∩ T−kA)

≤ Kµ(A) +N2
0 + 2

K−1∑
k=N+1

k(µ(A)2 − ε)

≤ Kµ(A) +N2
0 +K2(µ(A)2 − ε),

so that K2ε ≤ Kµ(A) +N2
0 . This is a contradiction for big enough K.

We can finally prove Theorem 3.1.

Proof. We consider the finitely additive probability measure dω from Equa-
tion (1) in (Z,P(Z)) (say any set of negative numbers has measure 0). Note
that T : Z → Z;T (n) = n + 1 is a dω-preserving map, as dω(A) = dω(A + 1)
for all A. Moreover, dω(A) = d(A) > 0. Now, for each n ∈ N define the set
An = (A− n) ∩ (A+ n) = TnA ∩ T−nA. Then, we have

lim sup
N

1

N

N∑
n=1

dω(An) = lim sup
N

1

N

N∑
n=1

dω(A ∩ T−2nA)

= lim sup
N

1

N

N∑
n=1

dω(A ∩ (T 2)−nA) ≥ dω(A)2.

So by Theorem 3.3, there is B ⊆ N such that d(B) ≥ dω(A)2 and dω(Ab∩Ab′) >
0 for all b, b′ ∈ B. But, for all b, b′ ∈ B,

(A− b) ∩ (A+ b′) ⊇ (A− b) ∩ (A+ b) ∩ (A− b′) ∩ (A+ b′) = Ab ∩A′
b.

So dω((A − b) ∩ (A + b′)) > 0. In particular, (A − b) ∩ (A + b′) ̸= ∅, so
b + b′ ∈ A − A (as, letting t ∈ (A − b) ∩ (A + b′), we have t + b, t − b′ ∈ A, so
b+ b′ = (t+ b)− (t− b′) ∈ A−A).

We conclude that B +B ⊆ A−A.
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